(2x)^2+(3x)^2=117

Simple and best practice solution for (2x)^2+(3x)^2=117 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x)^2+(3x)^2=117 equation:



(2x)^2+(3x)^2=117
We move all terms to the left:
(2x)^2+(3x)^2-(117)=0
We add all the numbers together, and all the variables
5x^2-117=0
a = 5; b = 0; c = -117;
Δ = b2-4ac
Δ = 02-4·5·(-117)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{65}}{2*5}=\frac{0-6\sqrt{65}}{10} =-\frac{6\sqrt{65}}{10} =-\frac{3\sqrt{65}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{65}}{2*5}=\frac{0+6\sqrt{65}}{10} =\frac{6\sqrt{65}}{10} =\frac{3\sqrt{65}}{5} $

See similar equations:

| (x^2)+(600x)=0 | | 22,8-x=25,3 | | 5x-6=3(x+7)= | | 3x-7=x+9x= | | 2p=74 | | n-42=41 | | n−42=41 | | 3x−9=−7x−4 | | 8(7)=k | | 71=p+35 | | 3x2+x=0 | | m=6(6) | | k-49=1 | | a^2-a-a=0 | | c=2(38) | | c+72=76 | | (3a)^2=0 | | x2/5-0,2x=0 | | n+15=79 | | x(6x+4)=-1 | | 20=10f | | 2h+4=5h-5 | | 9x2-60x+100=0 | | (4-3m)/2=(1-5m)/3 | | 7(w+3)=63 | | 18—7x=-3 | | F(x)=3x2+5x+4 | | (x+3)x6=30 | | 2x+2=5-2x | | 4(5x+5)=2x-34 | | 4x+12-2x=x^2+3x | | 4x+12-21=x^2+3x |

Equations solver categories